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Single Transverse Mode Condition of Lens-Like
Strip Waveguide GalnAsP/InP Lasers

KAZUNORI MORIKI anp KENICHI IGA, SENIOR MEMBER, [EEE

Abstract—The theoretical analysis of the single transverse mode
condition and lasing properties of a lens-like strip GaInAsP/InP laser
is described. First, extended rate equations have been derived which
include the carrier diffusion in the active layer and the carrier spread
in the cladding layer and the dependency of the carrier lifetime on the
current density. Next, it has been shown that the reasonably good
assumption that the field of a lasing mode is determined by the built-in
index waveguide is effective for simplifying to solve these equations.
The result on lasing properties from the theory has been compared with
experiments which were made on GaInAsP/InP(A = 1.3 um) lens-like
strip and terraced substrate lasers. In addition, the single transverse
mode condition is discussed and criteria have been obtained.

1. INTRODUCTION

T has been observed in stripe geometry gain-guiding lasers

that the transverse mode is sometimes unstable and the
I-L characteristic has a kink, and these phenomena are ex-
plained by the variation of the guiding condition [1]-[7],
i.e., it has been made clear that the lasing property of the gain-
guiding laser far above the threshold strongly depends on the
distribution of light field and carriers in the laser cavity, and
this is essential in this type of laser. On the other hand, the
mode controlled laser which has a so-cailed index-guiding
structure sustains a relatively stable transverse mode and
linear J-L characteristic in the definite range of driving current.
When the injection current exceeds the critical level which is
the function of the waveguide structure, however, higher
transverse modes begin to oscillate and the I-L characteristic
begins to exhibit some nonlinearity. Therefore, it is necessary
to know how well the laser is operating in single mode by
considering, for example, the deformation of the mode field
due to the spatial variation of carrier concentration, carrier
diffusion in the active layer, the spread of the current in the
cladding layer, and so on. Usually, the laser operation includ-
ing these effects is expressed in terms of the continuous equa-
tion of carrier and wave equation [3], [6], [8], and [9].
But, enormous numerical calculation is needed to solve these
equations, if we want to have quantitative results which can
compare with experimental data. Streifer ez al. [9] demon-
strated by solving the simultancous differential equations
numerically that the theoretical result agrees with the experi-
ment on the range of single mode operation, threshold current
level, and differential quantum efficiency. But, it still took
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a rather long time to do so by using a computer. In addition,
the dependency of a spontaneous carrier lifetime on carrier
density was not considered in their analysis, and it was as-
sumed that the waveguide structure of the employed model
has an infinite width where many higher modes are far from
cutoff,

According to some experiments [10]-[13], on the other
hand, it has been shown that the laser with a built-in index
waveguide operates with the stable dominant mode in the
definite range of the injection level and the mode shape does
not change so much. This implies that we can assume that
the guided mode itself is determined by the effective index
distribution even though some higher modes can be guided in
the actual built-in index waveguide (the waveguide is over-
size). By taking this into consideration we can expect that the
problem is very much simplified and the dependency of the
spontaneous carrier lifetime on the carrier density is possibly
taken into account without much difficulty.

In this paper we discuss the single mode condition of the
lens-like strip waveguide laser and the current range for single
mode operation. We provide a theoretical and experimental
description of lasing properties of the GalnAsP/InP terraced
substrate (TS) laser and the lens-like strip waveguide (LS) laser
which have such built-in index waveguides fabricated by a
single step LPE [14].

The symbols used in this paper are listed below.

A gain constant

2a waveguide width

a constant which expresses the shape of the wave-
guide

A difference of optical modal losses of the funda-

mental mode and the first mode

Oyp absorption loss (due to free carrier absorption,
Auger recombination, and other absorptions) in
the active layer

O, effective loss when N(x,») =0

Oy absorption loss in the cladding layer

Bege effective spontaneous recombination constant
propagation constant of the ith mode

¢/Ness light velocity in the cavity

D diffusion constant of the carrier

d(y) thickness of the active layer

£ confinement factor as a function of y

G(y,y')  Green’s function of continuous equation

G; mode gain of the ith mode

1 injection current

Imax maximum guided mode number
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k wave number 27/ A

K(y,y') integral kernel of the wave equation

K(y) propagation constant along x axis a function of y
L cavity length

L, diffusion length of carriers

N(x,y) carrier distribution

nx,y) refractive index

P pumping constant

[¥(x,y)|*> normalized light intensity distribution

Pyt output power from both facets

q charge

R reflective coefficient

A wavelength

R, resistance of the cladding layer

S; photon number associated with the ith transverse
mode per unit cavity length

Ts spontaneous carrier lifetime

Tp photon lifetime in the cavity

w electrode width.

II. ANALYSIS
A. Formulation

Prior to the analysis, we will discuss our model. We consider
the laser with a three-dimensional strip waveguide as shown in
Fig. 1 with a coordinate system. The waveguide in this model
is constructed by a nonuniform thickness active layer. Since
the refractive index in the active layer reduces with the in-
crease of carrier density, this effect and local gain construct a
part of waveguide structure. In addition, if spatial hole
burning occurs, the distribution of the gain and the refractive
index are disturbed. Streifer er al. discussed the influence
of the injected carrier levels on the refractive index in the
GaAs/GaAlAs laser [9]. The change of refractive index (at
29.4 mW of output versus the threshold) was 0.0025 in their
model. This change causes the deformation of the field, and
the lasing property may be deteriorated. In our model, on
the other hand, we assume that the built-in index waveguide is
0 strong as we can neglect the change of the refractive index.
Since the change of the fundamental mode FWHP was only 4
percent at 2.5 times the threshold as reported in [9], this
assumption is reasonably good.

Basic equations which express the rate of changes of N and
S; with respect to time are written as follows:

2

iN(x 0= D(a —ai)N(x \t)——l-N(x t)
y: a 2 ayz ’y3 Ts ay’

imax
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Fig. 1. A schematic view of the GalnAsP/InP laser with the waveguide
structure constructed on a nonuniform thickness active layer.
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The parameters are defined by the table listed in Section L.
Equation (1) is a continuous equation of minority carrier.
The first and second terms on the right-hand side mean the
effect of carrier diffusion, the third and the last terms are
spontaneous recombination and stimulated recombination,
respectively, where i denotes the mode number and ip,y is
the largest mode number, Equation (2) is the equation which
expresses the rate of the change of photons. The first term
expresses a stimulated emission, the second is the decay of
photons in the cavity. A contribution of spontaneous emis-
sion is neglected in this analysis. The wave equation is repre-
sented by (3). )

These two-dimensional equations can be reduced to one-
dimensional equations by giving properly allowable boundary
conditions. First, we discuss the continuous equation (1).
The current injected into the active layer through a p-n hetero-
junction is given by

]
EJ;N(x,y, t) 4

1
== —J(»,1).
x=0 qD
If the overflow of carrier from the other side of the hetero-
junction can be neglected, another boundary condition is
expressed as
=0. &)

3
— N, y,t
x> 0) x=d(y)

By integrating (1) with respect to x and substituting the
boundary conditions (4) and (5), (1) reduces to a one-
dimensional equation with respect to y as follows:

2

o - 32 _
aN(y,t)=L3,-y—zN(y,t)-N(y,t)+P(y,t‘)

imax

- (c/neff) Z Sl(t) Tsé(y)

d(y)
[Ny, 1) = ain] [ViP) P

where we have defined
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Ny, t E@J; N(x,y,t)dx (7
1 a(y)
1Y) 2 E@ A [¥yx, »)1? dx ®
P(y,0)=r1J(y, )lqd(y) ©)
Ly =+/1D. (10)

£(y) is the confinement factor of the field associated with
the y direction, and M(y) is the average of N(x, y) with respect
to the x axis.

The carrier lifetime 7, depends on the carrier density. After
averaging over the y axis, the photon number Sg, from spon-
taneous emission is given by

Sw=Bex | Y . an
In the rate equation (6), the term associated with spontaneous
emission is

f: N(y)dy

S
p Te

(12)
By using (11) and (12), the carrier lifetime is determined by
the following equation:

| wora
— (13)

Ts' = Begr —m .
| wora

This equation exhibits the dependence of 7, on the carrier
concentration.

The parameter d( ) is the thickness of the active layer as a
function of the position y, and it is assumed to be expressed
as the following equation:

d(y) =d(0) - (d(0) - d(@)) (y/a)*
=d(a)

where d(0) and d(a) denote the thickness at the center of the
waveguide and flat areas of the active layer, respectively, and
o is the constant which expresses the shape of the waveguide.
Equations (2) and (6) are extended rate equations including
carrier diffusion. We will discuss later on the lasing property
of the laser at the steady-state by using these equations. The
flow chart for the analysis in this paper is shown in Fig. 2.

lyi2a

14
|y >a (1)

B. The Single Mode Condition of the Waveguide

In order to obtain single transverse mode operation, it is
desirable to fabricate a single mode waveguide. In this section
we discuss the field and the single mode condition of the
built-in index waveguide which has already been shown in Fig. 1.
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Fig. 2. A flow chart of the analysis where employed assumptions and
approximations are marked.

By employing the effective refractive index method [14],
(3) can be reduced to

% UGF) - TG+ P21 - 7 $(5)=0  |FIS 1

& _ _
@;w(y)-rzw(ywo lyI>1

(15)

where
Y =yla (16)
V3 =a*(k(1)* - k(0)*) 17
I? =a* (B} - k*n} +k(1)*) (18)

and k(y) satisfies the eigenvalue equation for a boundary
condition of the x axis, which is given by

tan (3 k(7) d(¥)) =Vk*(n} - nd)k(¥)* - 1. (19)

The field equation (9) satisfies boundary conditions written
as

d  _ d _
— =0, — r =0 (20
& v() - e Y(») - +IY(y) - (20)
for odd modes, or
V| =0, Zym)|  +ree| =0 @
F=0 Ly y=1_ y=1_

for even modes. These equations are Sturm-Liouville boundary
problems. By using the Green’s function, they can be trans-
formed to the equivalent Fredholm’s integral equation of the
first kind

1
v =3 [ KETVE ) &
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(1
s VIF VI

- {exp -Tly-y')- exp T(y +7' N}

for odd modes

K(7,7) =<
SV VT
 {exp (-T1y-y' ) +exp -T(¥+y' )}
\ for even modes (23)

where the integral kernel is symmetrized, and
V() =V1-3* ¥().
The relation between the propagation constant
(6= VI + KT - 3 (D))
and the normalized waveguide width ¥, can be derived from
eigenvalues of this equation. At the cutoff of the ith mode,
the propagation constant is expressed as

B;= lim VI?/a® +k*n? - k2(1) =Vk*n} - k2(1).
r—-o0 .

24

Therefore, the condition for a single mode guidance can be
obtained by the lowest eigenvalue of (22) and (23) for even
modes [15]. Since the kernel is symmetric, the lowest eigen-
value of this equation is given by the approximation of the
second order trace by the following:

1 1
= [ & [ & kGFIEG ©3)
0 o
At cutoff a kernel K (7, ") for even modes is given by
Kc(.i’-,.}_’v) = Fli—inoK(j;,;,)
{)7\/1 -yea1-y*  0sy<y's1 26)
V' V1-yai-ya 0<y<y 1.

Then the cutoff ¥y, value is given by the following equation
for « class waveguide.

1 1 3 4 1
Vyg= {—+ - +—X .
ye { 6 at2 a+3 3 at 4}
This equation expresses a single mode condition of the wave-
guide, The field in the waveguide and the propagation con-

stant can be calculated by eigenfunction and eigenvalue of
(22), respectively.

@7

C. Threshold Current

The threshold current of the laser with a lenslike strip
waveguide is led from (2) and (6). In order to include the
contribution of the current spread to the carrier concentration
profile, we utilize the injected carrier distribution which is
represented by an exponential function according to Tsang
[16],

1687
o~ I |
P ¥l = > W
P(y)= 28
y-1/2W ~_1 (28)
Pexps- ly|>=—W
I, 2
where
~  715J(0)
P==
qd(0)
2 1/2
=\ —=<
° (5Pya21(0)>
=1L
kT
W= W/a.
The total current ] is given by
d(0) LWP 2¢d(0) P\/?
| gdQLWP  (2d(0) 9)
Ty 5Ry7's

where L is the cavity length, W is the electrode width, and
R, is resistance along the y direction which is represented by
Ry = p/ dclad°

We can assume that the number of photons in the waveguide
below the threshold is so small that we can neglect it. From
the solution of the differential equation (6) with the assump-
tion that §; = 0 the carrier distribution profile is expressed by
the following equations:

( - — -
P- ﬁ( Ln_ )exp <— 2_—W>cosh<—_3.)—)
lo+L, L, L,

L
N,(3)= _ _ (30)
() =4 p( ) (L
2 I,-L, I,+L,
oo () e
p L, p L,
71>~ W
Y173
~
where
L,=Ly/a. €2))

On the other hand, the photon lifetime 7, in (2) is given by

Lo (1.1 '
TPI = ’;:t:f_ {Z lnE i +(1- &) aex} (32)
where
Ex = J ) 1WOH? dy. (33)
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The threshold current is obtained by substituting ﬁth which  Here, if the spatial hole burning is not so appreciable, N(7)

satisfies (2), (13), (30)-(32), into (29)

22
Iy = Je + v
th LW [ e 5RyW e ] (34)
where
- 7sPin
¢ qd(0)’

D. Differential Quantum Efficiency

in the denominator of (39) can be replaced by N,p,(¥),

| & | a3 250665 ud) - am

(N 1o (712 EL de dflg%fg%ﬂ

“G(7,7") (AoNi(¥') = i) Yo () ? [¥o(F)I?. (40)

The output light power of the fundamental mode (i =0) By using this assumption, (39) can be transformed into a

is derived by using (6), which can be transformed into an

closed form

J. f G(J7,J7')P(J7')£(J7)lll/o()7)lzdJ7'dJ7—f N (¥) §5) Wo(P)* &7

So =—= .
f f EY ) EDA()) G(3,57") (AN (F') - 0n) 1o (P2 1Yo (D)1 &V’ dF

integral equation

——y

N(f)=f G,y )P dy'

)

-0 | 6067 o) - ) B

1o (V)P dy' (335)

where G(7, 7') is a Green’s function which satisfies the next
equation
2

2 d”;TzG(m') -GG =-8G- 7). 36)

While the mode gain of the fundamental mode is given by

6o~ [ UG-l DG B @)

Since the mode gain of the lasing mode above the threshold
is kept almost constant at the fixed value which corresponds
to the mode loss in the cavity, this equation can satisfy, by
using N(¥) in (35) above, the threshold instead of using
N (7). Then, the next equation is obtained

f NOYEO) 1Wo(P) 1 dy

= f N (7)) ED o (D) dy (38)
where Ny, (7) is the carrier distribution at the threshold. By
substituting (35) into (38), we obtain after some algebraic
manipulation

(“41)

This equation gives the photon number of the lasing mode per
unit length of the cavity. The output power Py, from both
facets is represented by

1
Py =Hew ——S,L

Tpm

1
=hwSo(c/nesr) In R 42)

After numerical calculation with (28)-(30), (41), and (42),
the I-L characteristic is obtained. The differential quantum
efficiency is given by

n =dPout L
A M

_dS0q(c/nesr) In 1/R
dl )

“43)

E. The Current Range for Single Transverse Mode Operation
The mode gain G, of the first mode is given by

G, = f (AoN(F) - @) ENIV1(F) P dy (44)
where |, (¥)|? is the field intensity of the first mode. If the
difference of modal loss between the fundamental mode and
the first mode is written as Ac, the lasing condition of the
first mode is given by

G, =G, + Ac. (45)

This equation (45) is transformed by using (37) and (44),
into

|| w36 19000r & &~ [ Tuld) ) 1006)P 7

[ _[ GG EONATN) G(7,7") (AoN(T') - ) | Wo(F)I? 1Yo (F) 1P &' dy

(39)
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f N EHI: (D) dy

- [ R PG B bol,. 0

Here we assume that the deformation of the injected carrier
distribution above the threshold of the fundamental mode is
not so remarkable, The injected carrier P(y) at the threshold
of the first mode is expressed by

P(y)=HPn(¥) @47

where H means the ratio of the pumping constant of the first
mode to the fundamental mode at the threshold. By the
substitution of (35), (41), and (47) into (46), H at the thresh-
old of the first mode is obtained by

j Nth(i)s(iwo@)e’di—f
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Fig. 3. Single mode condition for a lens-like strip waveguide.

ﬁth is determined. The threshold current [y, is calculated by
substituting Fth into (29).

Here the gain constant 4, and oy, at 1.3 um and 1.6 um
were reported by Yano et al. [18] and Stubkjaer et ol. [19],

oo

Nen(PYEF) w1 ()P dF + Aafd,

f f G, 7 Y A7) - aim) 8 £ 1w oD 19 4 (F)1 dy &'

f N eI 1001 di—f N e 1w o ()12 d7 X

where the threshold current of the first mode is given by

_ qd(0) LWHP,, 4 [229©) HPy \?
3R,y )

I
thi . 49)

III. EXPERIMENTAL AND NUMERICAL RESULTS

In this section we discuss the comparison between numerical
and experimental resuits. Two types of GalnAsP/InP lasers
(A = 1.3 um) have been prepared in this work. One is a terraced
substrate (TS) laser and the other is a lens-like strip active
layer (LS) laser. These lasers have a built-in index waveguide
which consists of the partially nonuniform thickness active
layer and are almost equivalent to the model in our theory.

First we discuss the criterion for single mode guidance. It
can be obtained from (17), (19), and (27) by numerical calcula-
tion, i.e., “a” in (17) is determined by substituting x(0),
k(1), and ¥y in (17) which are obtained from (19) and (27).
The result is shown in Fig. 3, where n; =3.52 and n, =3.2
are used as the refractive indexes of the GalnAsP active layer
and InP at 1.3 um wavelength [17], respectively, and o = 2.
The dimension of the waveguide fabricated by LPE growth is
located within a shadowed region in Fig. 3, which has 2.5-
3 um in width and thickness difference by about 0.5 um.
Single transverse mode operation has been obtained with these
lasers in the range from 1.3 to 3 times the threshold.

Threshold current can be calculated from (2), (29), (30),
(32), and (13). First we obtain P from (30), which satisfies
(2), where 7, and the field are given by (32) and (A1), respec-
tively. Next by using this P, we substitute (30) into (13), so
that 7, is given. We again obtain P which satisfies (2) by using
Tg. This process is continued until P converges, and thus

J. f G(3,7 Y ANm(F') - ain) €)Y EGF Y 1w o121y o(F) d dy'

(48)

respectively. We use 4, =1.6 X 107¢ cm® and o, =230
cm™ after [18]. The effective spontaneous recombination
constant Beg for GalnAsP (A=1.6 um) was measured as
1-2X 107!% ¢m® -s™ [19]. We have assumed that Beg =
2X 107 ¢m® - 57!, D =30 cm? - 57! have been used as the
diffusion constant. The other parameter values are taken to be
Oy =20 cm™, 0, =40 cm™, and R =0.31. The result of
the computer calculation is shown in Fig. 4.

The dimensions of the TS laser used in the measurement are
as follows: the active layer is 0.17 um thick at center and 0.05
um thick at flat areas, InP cladding layer is 2.5 um thick
(Zn doped 5 X 10'7 ¢cm™®), and GalnAsP cap layer is 0.5 um
thick (Zn doped). Measured data at the pulsed operation are
shown by the dots in Fig. 4. The resistivity is estimated as
py=3-6X 1072 Q-cm with p, = 1/qup, where y is about
3X 10?2 em? - V™! -5 [20] and p =0.5-1 X 10*® cm™. The
result of the calculation is shown by the solid lines, which
agree with the measurement. The nonlinearity of the theoreti-
cal lines in shorter cavity length is caused by the dependency
of 74 on the carrier concentration. Results for LS GalnAsP/
InP lasers are shown in Fig. 5. The same parameters are used
for calculation.

The threshold current versus the waveguide width 2z for
several Ry, are shown in Fig. 6. A shadowed region in this
figure shows the area of parameters in the experiment, With
larger R, the threshold current level reduces. But, if R, is
larger than 1000 £, it is not so sensitive. Therefore, it is one
of the criteria for the design of lasers that R, is made to be
greater than 1000 L. This value may be achieved when p
(dopant concentration) X dg,q (cladding layer thickness)
<32X 107 ¢cm™,
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From Fig. 6 the expected minimum threshold current is
about 50 mA for the waveguide of 1-2 ym in width and 300
um cavity length. This value is large as compared with BH
structure lasers. This is caused by the spread of injected cur-
rent in the cladding layer and the carrier diffusion in the active
layer. It is desirable for the low current operation to fabricate
the waveguide of 2-3 um in width,

The threshold current of the first mode is calculated from
(49), where fth and Ng,(p) are the injected carrier and the
carrier density in the active layer at a threshold of the funda-
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Fig. 7. Criteria for a single mode operation of GalnAsP/InP with a non-
uniform thickness active layer.

mental mode, respectively. When the threshold current of the
fundamental mode is calculated in Section II-C, these values
are obtained. The difference of optical loss between the
fundamental mode and the first mode, which is expressed by
Aq, includes a scattering loss due to the imperfection of a
waveguide, etc. Since the modal loss of the first mode is
usually larger than that of the fundamental mode, Aw is posi-
tive. Here, we present the result for Ae = 0. This assumption
is severer for the single mode- condition than for the case
of Aa>0, Fig. 7 shows the current range for the single
mode operation versus the waveguide width 22. The first
higher order mode is cut off in the left shadowed areas of the
broken line. It is found from this figure that the criteria have
a margin for design of single transverse mode lasers. Experi-
mental results are shown by the shadowed area in Fig. 7.

IV. CONCLUSION

A laser with the nonuniform thickness strip waveguide is
one of desirable devices for single transverse mode operation.
We have discussed properties of this type of lasers and the
single mode condition by introducing the theory based on
extended rate equations. In addition we have compared the
result of calculation with experiments which have been made
for GaInAsP/InP lasers (A =1.3 um). The p (dopant concen-
tration in cladding layer) X dy,q (cladding layer thickness) <
32X 107 c¢m™2, and waveguide width (2a)=2-3 um are
necessary to make threshold current reasonably low. The
criteria of the design for the single transverse mode operation
have some margin compared to that for the passive waveguide.

APPENDIX

The next field equation is used in the numerical calculation
of the sections

— Yo cos (f(3)) {Flsy =20t
= = Al
Vo) { Vo exp (7)) (Flery 2o} (4D
for the fundamental mode,
- Yy sin (f(¥)) sy >0}
= _ _ - A2
Vi) {kbl exp (-2(>)) {J’|g(jz')§o} (42)

or the first higher mode, where



MORIKI ‘AND IGA: SINGLE TRANSVERSE MODE CONDITION

d . _ —
Ef()’) =\/k2"%" k(¥)* - B
(A3)

%g(i)=\/ﬁ? T

The propagation constant is obtained by the second order
trace of (22) and (23). These are better approx1mat10ns
than the WKB method near the cutoff.
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